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INTRODUCTION 

The problem of gas flow through porous mediums with application to exploitation of 

fields shows serious difficulties even in the simple case of plane-quaquaversal flow through 

a homogenous and isotropic porous medium. Indeed, even if it accepted that the flowing 

phenomenon is usually isothermal; the pressure differential equation is non-linear and as 

for the gas behaviour both the deviation from the perfect gases low and the viscosity 

pressure variation should be taken into account. 

The mathematical model described in this study takes into account all the above aspects; 

therefore the use of a numerical method of solving is required. Such method is applied in 

the case of a permeable field exploited at various rates of flow. For each exploitation 

pressure is thus established and its optimal value can be found.  

 

 

MATHEMATICAL MODEL 

The process of gas plane-quaquaversal isothermal flow through a homogenous and 

isotropic porous medium is simulated by equation [1] 
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where -Hamiltonian, m and k – porosity, i.e. the permeability of porous 

medium(constants), p – field gases pressure, and  and Z – dynamic viscosity, i.e. the factor 

of gas deviation from the perfect gas model, both depending on pressure. Equation (1) may 

also be written as 
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where the function  and   result from the relations  
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and depend on gas pressure only. We can also write  
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which results in making equation (2) becom 

   
2 2 p

p p
t t


 

 
   

 
   (4) 

As p = p(r,t), by change into polar coordinates, equation (4) becomes 
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Equation (5) represents the mathematical model of the process of gas flow through a 

circular field towards a central well, its solution providing the gas pressure distribution in 

time according to radius. Introducing a new dimensionless variable by  
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sR  being the well radius and cR  the field outline, as well as the low pressure P(,t) by  
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cp  being the critical pressure, equation (2) becomes [2] 
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where the functions  and  result from the expressions 
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and the coefficients a and b are calculated with 
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Equation (8) simulating the process of gas flow towards a central well into a 

homogenous and isotropic circular field is a differential equation with partial derivative of 

2nd  degree of parabolic type and non-linear. It admits no analytic solution, but a computer 

assisted numerical approach. 
 

 

 

 

INITIAL AND LIMIT CONDITIONS 

The initial condition transposes mathematically the fact that the gas pressure in entire 

field has the value pz at the initial moment, i.e. 
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The limit conditions are necessary in terms of field exploitation method and also of its 

characteristic. Hence, in case the field is exploited at constant rate of flow, the condition of 

maintaining constant the gas pressure ps at well outlet is to be set: 
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In the case of closed field with permeable outline(with water pushing), the condition of 

maintaining constant the pressure zp  on such outline is necessary,i.e.  
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NUMERICAL METHOD 

We will transform the continuous spectrum C: [0 ≤  ≤ 1, 0 ≤  t ≤ T ] into the point 

discrete lattice Rij :[ =(i-1)h, t=jini ], where  i=1n,  j=0m are the spatial index and the 

temporal index, respectively, and h and  are the spatial pitch and temporal pitch, 

respectively, and n and m are their numbers. Thus, instead of exact values of pressure P(, 

t)  we will consider the discrete approximate values  ,j
i i jP P t .  

Making use of calculus scheme with finite quotients of Hyman Kaplan implicit type [3], 

known as stable unconditionally and absolutely convergent, as well as end approximations 

proposed by West, Garvin and Sheldon [2], equation (8) becomes a system of equations 
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generated by the scheme, for  

i = 2n, where 
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completed with 
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Here the values of low pressure at temporal level j are considered as known, and unknown 

at temporal level j+1, respectively. 

 

 

NUMERICAL SIMULATION OF FIELD EXPLOITATION 

In order to solve the system of linear algebraic equations generated by the scheme with 

finite quotients (14) we will mark with P0(i) the distribution of low pressure corresponding 

to known moment, j, and with P(i) the distribution of low pressure corresponding to 

unknown moment, j+1. The two approximate solutions successively obtained by solving 

the algebraic system generated by the calculus scheme adopted will be marked with P1(i) 

and P2(i), respectively; obviously i will take values from 1 to n+1. To facilitate the 

compiling of the calculus program we will define the supporting functions Z(X), Zp(X), 

V(X), Vp(X) that will help us calculate the value sets of deviation factor Z(i), Zp(i) and 

dynamic viscosity V(i), Vp(i), respectively, corresponding to the distribution of low 

pressure at moments required by running the calculus program, i.e. for P0(i), P1(i)or P2(i). 

Now the values corresponding to expressions C(i) and D(i) can be calculated based on 

calculus procedures. The conditions (19) are obviously written as 

   0P i Pz ;  1P Ps ;  1P n Pz   (20) 

In the case of permeable closed field exploited at constant pressure, the calculus scheme 

(14). 

With  the conditions (20) generate the following system of equations 
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As the resulting algebraic system has a coefficient matrix of Jacobi type, i.e. 

tridiagonally, its solving becomes easy following the use of Thomas process [2]. Thus, we 

will firstly determine 
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after which the following can be calculated for 2i n   
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and finally, because  1 zb n P  , the solution of the system of equation is 
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CALCULUS EXAMPLE 

We will consider a closed impermeable circular gas field having the outline radius of 200 

m, 40 m thickness, 20% porosity and 10 mD permeability. The pressure of field gases is of 

140 bar, and their temperature of 27 C. The field is exploited by a well of 0,1 m radius.  

For pressure depending on gas viscosity and deviation factor, respectively, we accept the 

relations: 

    21 0,02 0,004P P P     (26) 

    21 0,062 0,004Z P P P    (27) 

experimentally determined from field curves. We will consider a spatial pitch of 

digitization lattice of 0,01 a temporal pitch of 60 s, and 10
-5

 acceptable error of iterative 

calculus. 

In diagram 1 the gas cumulation for a pressure values set is showed. It can be observed 

the range of optimal pressures being included between 65 and 70 bar. 

 

 
 

Diagram 1 
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CONCLUSIONS 

The model proposed may be used to exploit gas fields through wells at constant 

pressures. 

The calculus program may be included as equipment of extraction field, simulating the 

deposit exploitation at various gas pressures at top of the well, and based on daily 

cumulation the pressure leading to maximum output can be chosen. 
 

 

ABSTRACT 
 

 

It is regarded the isotherm movement of gases through a porous and isotropic medium towards a central well, 

taking into account the deviation from the perfect gases law and the viscosity pressure variation. The resulting 

model, completed with the specific limit conditions, is approached through a numerical method of solving and is 
applied to the wells through which the gas fields are exploited at constant pressure. For the current exploitation 

pressures daily cumulations of gases have been determined, thus resulting the optimal value of the exploitation 

pressure. 
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SOME ASPECTS REGARDING THE STRESS DISTRIBUTION IN THE  

VESSEL ELEMENT – ASYMMETRIC CONIC REDUCTION 

PART II – FEM ANALYSIS 
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The calculus of the asymmetric conical reductions that are part of the heat exchangers 

with steam space (Kettle type reboiler - see figure 1) that have to withstand interior 

pressure, is done using the C4 – 90 [1] standard. The thickness of the wall of the 

asymmetric conical reduction, during the design process is determined with the relation: 

 s  sc + c1 + ct + ca  (1) 

The significance of the symbols in equation (1) are: c1 represents the corrosion 

thickness supplement; ct – the negative deviation of the metal sheet thickness; ca – 

technological supplement;     sc – the thickness of the metal sheet determined from the 

failing condition with the relation: 

 
1

2 cosa

pD
s

Z p 
 


 (2) 

In equation (2), D is the interior diameter of the conical element – see figure 2, a; p – 

the calculus pressure; Z – the failing coefficient of the welded hinges;  – the angle of the 

generatrix in the vertical symmetry plane (figure 2). The calculus admissible tension is 

determined with the relation: 



 

«Вісник СумДУ», №1(73), 2005 30 

 
1 2

min ;
tt
me

a
s s

RR

c c


 
  

  

 (3) 

Where t
eR  is the apparent yielding limit of the sheet metal material at the working 

temperature t; t
mR  - tensile strength of the sheet metal material at temperature t; cs1 and cs2 

– safety coefficients. 

Figure 1 

  

Equation (2) responds to the PD 5500:2001 [2] where the tensions that appear in the 

symmetrical conical reductions (figure 3) are determined with the relations: 
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where W is the axial force on shell (positive if tensile) at the transverse  section considered 

(this force excludes pressure load); M is the bending moment on shell acting  in a plane 

containing the shell axis, at the transverse  section considered; T is the torque acting about 

shell axis at transverse section;  is the angle included by plane of action of moment M and 

an axial plane through the point considered. 

As can be seen the calculus of the asymmetric conical reductions that hat are part of the 

heat exchangers with steam space (figure 1 and 2) is identical with the one used in the case 

of the symmetrical conical reduction. This calculus does not take into account, on one hand, 

the reduction asymmetry, and on the other hand, the tension amplifications that appear in 

the filleting zone. 

For a correct evaluation of the tensions in such a structure one used the FEM method.  

The problem of constructing the model, as emphasized in the first part of the paper [3] 

proved difficult, the solution being obtained by an interdisciplinary approach, using Solid 

Edge and Excel. 
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Figure 2 

  

 For a case study, one has chosen the heat exchanger with the following geometrical 

dimensions: di = 1400 mm; Di = 2800 mm,  = 45
o
. 

 

 

THE MODEL 

The geometric model of the conical zone has been imported from Solid Edge in ANSYS 

7.0. The model has been completely defined through the adding of the cylindrical zones 

directly related with the conical zone, along with a cylindrical zone corresponding to the 

heat exchanged body, sufficiently lengthy not to influence the tensions in the conical area 

and in the support area (figure 4).  

Figure 3 



 

«Вісник СумДУ», №1(73), 2005 32 

 

               Figure 4                                                        Figure 5 

ELEMENTS 

The authors considered the SHELL93 element (figure 5) from the elements library of  

ANSYS 7.0, an eight nodes  element, that allows determining the tensions and 

deformations in the moment theory. For the considered element one has defined four 

thicknesses, corresponding to different zones of the model, thicknesses obtained by design 

calculus. So: for the cylindrical zone s = 25 mm; for the saddle support s = 45 mm; for the 

asymmetric conical zone s = 35 mm; for the flange s = 120 mm. 

  

LOADS AND  RESTRAINTS 

One has defined two loading cases corresponding to the real loads of the heating 

exchanger: 

a) interior testing pressure p = 3 MPa and  temperature t = 20
o
C; b) interior working 

pressure  p = 1,93 MPa and temperature t = 177
o
C. 

As far as the displacement restraints are concerned, all the nodes corresponding to the 

saddle support were blocked, along with the rotations in a plane perpendicular to the 

cylindrical axis and (figure 6).     

 

Figure 6 

  

THE MATERIAL 

The material used for manufacturing the conical reductions is P255GH (SR EN 10028). 

The characteristics are presented in table 1. 
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One has considered that the used material withstand a plastic deformation with 

nonlinear cold hammering  and the characteristic deformation-tension defined by the 

equation (see also figure 7): 

 
      pent ru 0,002 /

     pent ru 
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where: E is the Young modulus, n – cold hammering exponent; K – strength coefficient. 

 

Table 1 

 

Temp. 

[oC] 

Re 

[MPa] 

Rm 

[MPa] 

E 

[MPa] 

20 255 410....490 205940 

200 206 300...358 - 

250 180 - - 

300 157 - 181420 

350 137 - - 

400 118 - 171620 

450 98 - - 

500 - - 161810 

600 -  152000 

  

In the case of a nonlinear behavior of the material one can write:  
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where  A is the total strain. 

 

Figure 7 
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Equations (8) and (9) constitute a system that allows determining the unknowns n and 

K. For the material P255GH at the ambient temperature one has considered Re = 255 MPa, 

Rm = 410 MPa and A = 22%. With these data, one obtained the following values for n and 

K, n = 0,1216; K = 341,05 MPa, values used to model, in ANSYS, the nonlinear behavior 

of the material. The same approach has been considered for the mechanical characteristics 

of the material at temperature t = 177
o
C . 

 

 

INTERPRETATION OF THE RESULTS 

The analyzed results correspond to the two loading cases presented above. The 

INT EQV (von Mises) in the 

vertical symmetry plane of the conical asymmetric reduction following the generatrix for 

which  = 45
o
. In figure 8 one presents the distribution of the tensions EQV for case b) of 

loading. 

In figure 9, one presents the variation of the principal tensions at the exterior, 

respectively interior of the conical asymmetric shell for the loading case a), and in figure 10 

for case b). 

In table 2, are presented the maximal principal tensions obtained analytically and by 

using FEM.  

 

 

 

Figure 8 
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Figure 9 

 

 

Figure 10 

Table 2 

 

 p = 3 MPa; t = 20oC p = 3 MPa; t = 177oC 

INT [MPa] EQV [MPa] INT [MPa] EQV [MPa] 

Analitic 121,5 105,22 114,5 99,6 

FEM 248 241 214,5 207,8 

 

 

CONCLUSIONS 
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Firs of all, one can mention the significant difference between the tensions obtained 

using design formula and FEM analysis. This situation leads to the following observations: 

- the thickness s of the sheet metal used to construct the asymmetric conical reductions 

obtained through the analytical method leads to values of the principal tensions far smaller 

than the real ones; 

- the values of the real tensions, as they were obtained through FEM analysis are still 

within acceptable limits if one considers the mechanical characteristics of the material used 

(see table 1) with the amendment  

of modifying the  safety factors  cs1 = 1,5 and cs2 = 2,5 to 1,03 

 respectively 1,7. 

On the other hand, one has to stress the concentration of tensions in the filleting areas, 

where the round radiuses have the smallest values (for the case study r = 170 mm). The 

influence of the round radius r is insignificant, the tensions obtained on a model with r = 

200 mm are very closet o those obtained on the initial model. 

It is also important to mention the contour effect that appears in the joining area 

between the conical reduction and the cylindrical mantle, as a result of the different 

thicknesses of the two metal sheets (see figure 9  

and 10). 

A key role in determining with great accuracy of the tensions had the possibility, 

offered by ANSYS, to model a nonlinear and temperature dependent behavior of the sheet 

metal behavior. The performed analysis revealed the necessity of an interdisciplinary 

approach, in order to assure an accurate model and reliable results.   
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