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INTRODUCTION

The problem of gas flow through porous mediums with application to exploitation of
fields shows serious difficulties even in the simple case of plane-quaquaversal flow through
a homogenous and isotropic porous medium. Indeed, even if it accepted that the flowing
phenomenon is usually isothermal; the pressure differential equation is non-linear and as
for the gas behaviour both the deviation from the perfect gases low and the viscosity
pressure variation should be taken into account.

The mathematical model described in this study takes into account all the above aspects;
therefore the use of a numerical method of solving is required. Such method is applied in
the case of a permeable field exploited at various rates of flow. For each exploitation
pressure is thus established and its optimal value can be found.

MATHEMATICAL MODEL
The process of gas plane-quaquaversal isothermal flow through a homogenous and
isotropic porous medium is simulated by equation [1]
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where V-Hamiltonian, m and k - porosity, i.e. the permeability of porous
medium(constants), p — field gases pressure, and x and Z — dynamic viscosity, i.e. the factor

of gas deviation from the perfect gas model, both depending on pressure. Equation (1) may
also be written as

0
V- (¢Vp) = !//Ep )
where the function g and y result from the relations
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and depend on gas pressure only. We can also write
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which results in making equation (2) becom
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As p = p(r.t), by change into polar coordinates, equation (4) becomes
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Equation (5) represents the mathematical model of the process of gas flow through a
circular field towards a central well, its solution providing the gas pressure distribution in
time according to radius. Introducing a new dimensionless variable by
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R, being the well radius and R, the field outline, as well as the low pressure P(&t) by
P(£t) = pt) 7
C
p. being the critical pressure, equation (2) becomes [2]
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where the functions @and ¥result from the expressions
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and the coefficients a and b are calculated with
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Equation (8) simulating the process of gas flow towards a central well into a
homogenous and isotropic circular field is a differential equation with partial derivative of
2"d degree of parabolic type and non-linear. It admits no analytic solution, but a computer
assisted numerical approach.

INITIAL AND LIMIT CONDITIONS
The initial condition transposes mathematically the fact that the gas pressure in entire
field has the value p, at the initial moment, i.e.
P@®=%=% (12)

C

The limit conditions are necessary in terms of field exploitation method and also of its
characteristic. Hence, in case the field is exploited at constant rate of flow, the condition of
maintaining constant the gas pressure psat well outlet is to be set:

PO =R = (12)
Pc
In the case of closed field with permeable outline(with water pushing), the condition of

maintaining constant the pressure p, on such outline is necessary,i.e.

P(Lt)zPZ:% (13)

(4

NUMERICAL METHOD
We will transform the continuous spectrum C: [0 < £<1,0 < t <T] into the point
discrete lattice Rj; :[ £&=(i-1)h, t=j-5n; ], where i=1-n, j=0-m are the spatial index and the
temporal index, respectively, and h and 7 are the spatial pitch and temporal pitch,
respectively, and n and m are their numbers. Thus, instead of exact values of pressure P(¢,

t) we will consider the discrete approximate values F’ij = P(fi,tj).

Making use of calculus scheme with finite quotients of Hyman Kaplan implicit type [3],
known as stable unconditionally and absolutely convergent, as well as end approximations
proposed by West, Garvin and Sheldon [2], equation (8) becomes a system of equations
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generated by the scheme, for
i = 2+n, where
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Here the values of low pressure at temporal level j are considered as known, and unknown
at temporal level j+1, respectively.

NUMERICAL SIMULATION OF FIELD EXPLOITATION

In order to solve the system of linear algebraic equations generated by the scheme with
finite quotients (14) we will mark with PO(i) the distribution of low pressure corresponding
to known moment, j, and with P(i) the distribution of low pressure corresponding to
unknown moment, j+1. The two approximate solutions successively obtained by solving
the algebraic system generated by the calculus scheme adopted will be marked with P1(i)
and P2(i), respectively; obviously i will take values from 1 to n+1. To facilitate the
compiling of the calculus program we will define the supporting functions Z(X), Zp(X),
V(X), Vp(X) that will help us calculate the value sets of deviation factor Z(i), Zp(i) and
dynamic viscosity V(i), Vp(i), respectively, corresponding to the distribution of low
pressure at moments required by running the calculus program, i.e. for PO(i), P1(i)or P2(i).
Now the values corresponding to expressions C(i) and D(i) can be calculated based on
calculus procedures. The conditions (19) are obviously written as

PO(i)=Pz; P(1)=Ps; P(n+1) =Pz (20)
In the case of permeable closed field exploited at constant pressure, the calculus scheme
(14).
With the conditions (20) generate the following system of equations

P(1)="Ps
P(i-1)-[2+C(i)]P(i)+P(i +1)=B(i) =—C(i)PO(i)- D (i), i =2+n
Ph+1)=P, (21)

As the resulting algebraic system has a coefficient matrix of Jacobi type, i.e.
tridiagonally, its solving becomes easy following the use of Thomas process [2]. Thus, we
will firstly determine

a'(1)=0;b'(1) =R (23)
after which the followmg can be calculated for i=2-+n
(i)=-[2+C(i)]; b(i) = -C(i)PO(i) - D (i) (23)
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and finally, because b(n + 1) = P,, the solution of the system of equation is
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Ph+1)=PR,; Ph-i+1l)=b'(n-i+1)-a'(n-i+1)P(n-i+2) (25)

CALCULUS EXAMPLE
We will consider a closed impermeable circular gas field having the outline radius of 200
m, 40 m thickness, 20% porosity and 10 mD permeability. The pressure of field gases is of
140 bar, and their temperature of 27 °C. The field is exploited by a well of 0,1 m radius.
For pressure depending on gas viscosity and deviation factor, respectively, we accept the
relations:

#(P) =1+0,02P +0,004P? (26)

Z(P)=1-0,062P +0,004P? (27)

experimentally determined from field curves. We will consider a spatial pitch of
digitization lattice of 0,01 a temporal pitch of 60 s, and 10 acceptable error of iterative
calculus.

In diagram 1 the gas cumulation for a pressure values set is showed. It can be observed
the range of optimal pressures being included between 65 and 70 bar.
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CONCLUSIONS
The model proposed may be used to exploit gas fields through wells at constant
pressures.
The calculus program may be included as equipment of extraction field, simulating the
deposit exploitation at various gas pressures at top of the well, and based on daily
cumulation the pressure leading to maximum output can be chosen.

ABSTRACT

It is regarded the isotherm movement of gases through a porous and isotropic medium towards a central well,
taking into account the deviation from the perfect gases law and the viscosity pressure variation. The resulting
model, completed with the specific limit conditions, is approached through a numerical method of solving and is
applied to the wells through which the gas fields are exploited at constant pressure. For the current exploitation
pressures daily cumulations of gases have been determined, thus resulting the optimal value of the exploitation
pressure.
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SOME ASPECTS REGARDING THE STRESS DISTRIBUTION IN THE
VESSEL ELEMENT - ASYMMETRIC CONIC REDUCTION
PART Il - FEM ANALYSIS

Alexandru Pupdzescu, lonut Lambrescu, Alexandru Popa
Petroleum Gas University from Ploiesti, Romania

The calculus of the asymmetric conical reductions that are part of the heat exchangers
with steam space (Kettle type reboiler - see figure 1) that have to withstand interior
pressure, is done using the C4 — 90 [1] standard. The thickness of the wall of the
asymmetric conical reduction, during the design process is determined with the relation:

§>S,+C +C +Cy (8]

The significance of the symbols in equation (1) are: c; represents the corrosion
thickness supplement; c, — the negative deviation of the metal sheet thickness; ¢, —
technological supplement; s, — the thickness of the metal sheet determined from the
failing condition with the relation:

= _m 1 2)
20,Z - p coOsa

In equation (2), D is the interior diameter of the conical element — see figure 2, a; p —
the calculus pressure; Z — the failing coefficient of the welded hinges; o — the angle of the
generatrix in the vertical symmetry plane (figure 2). The calculus admissible tension o, is
determined with the relation:
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Where R}a is the apparent yielding limit of the sheet metal material at the working

temperature t; thn - tensile strength of the sheet metal material at temperature t; ¢y, and ¢,
— safety coefficients.

Figure 1

Equation (2) responds to the PD 5500:2001 [2] where the tensions that appear in the
symmetrical conical reductions (figure 3) are determined with the relations:

D 1
op=2. =, 4)
S COSo

pD? 1 W 1 am 1 ,
o, = . + . + - -cosé |; (5)
2(D+9s cosa| \#(D+9s cosa) |(z(D+9?3s cosa

T= Lz-tanwcose +2—T2, (6)
(D +9)°s (D +9)°“s

where W is the axial force on shell (positive if tensile) at the transverse section considered
(this force excludes pressure load); M is the bending moment on shell acting in a plane
containing the shell axis, at the transverse section considered; T is the torque acting about
shell axis at transverse section; 0 is the angle included by plane of action of moment M and
an axial plane through the point considered.

As can be seen the calculus of the asymmetric conical reductions that hat are part of the
heat exchangers with steam space (figure 1 and 2) is identical with the one used in the case
of the symmetrical conical reduction. This calculus does not take into account, on one hand,
the reduction asymmetry, and on the other hand, the tension amplifications that appear in
the filleting zone.

For a correct evaluation of the tensions in such a structure one used the FEM method.

The problem of constructing the model, as emphasized in the first part of the paper [3]
proved difficult, the solution being obtained by an interdisciplinary approach, using Solid
Edge and Excel.

3Bicnux CymV», Nel(73), 2005



Om

Figure 2

For a case study, one has chosen the heat exchanger with the following geometrical
dimensions: d; = 1400 mm; D; = 2800 mm, o. = 45°.

Figure 3

THE MODEL

The geometric model of the conical zone has been imported from Solid Edge in ANSYS
7.0. The model has been completely defined through the adding of the cylindrical zones
directly related with the conical zone, along with a cylindrical zone corresponding to the
heat exchanged body, sufficiently lengthy not to influence the tensions in the conical area
and in the support area (figure 4).
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Figure 4 Figure 5
ELEMENTS

The authors considered the SHELL93 element (figure 5) from the elements library of
ANSYS 7.0, an eight nodes element, that allows determining the tensions and
deformations in the moment theory. For the considered element one has defined four
thicknesses, corresponding to different zones of the model, thicknesses obtained by design
calculus. So: for the cylindrical zone s = 25 mm; for the saddle support s = 45 mm; for the
asymmetric conical zone s = 35 mm; for the flange s = 120 mm.

LOADS AND RESTRAINTS

One has defined two loading cases corresponding to the real loads of the heating
exchanger:

a) interior testing pressure p = 3 MPa and temperature t = 20°C; b) interior working
pressure p = 1,93 MPa and temperature t = 177°C.

As far as the displacement restraints are concerned, all the nodes corresponding to the
saddle support were blocked, along with the rotations in a plane perpendicular to the
cylindrical axis and (figure 6).
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ELEMENTS

Figure 6

THE MATERIAL

The material used for manufacturing the conical reductions is P255GH (SR EN 10028).
The characteristics are presented in table 1.
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One has considered that the used material withstand a plastic deformation with
nonlinear cold hammering and the characteristic deformation-tension defined by the
equation (see also figure 7):

GZ{E.gn pentru g£5p=0,002+Re/E’ @
K-¢ pentru & > ¢
where: E is the Young modulus, n — cold hammering exponent; K — strength coefficient.
Table 1
Temp. R, R E
[°C] [MPa] [MPa] [MPa]
20 255 410....490 205940
200 206 300...358 -
250 180 - -
300 157 - 181420
350 137 - -
400 118 - 171620
450 98 - -
500 - - 161810
600 - 152000
In the case of a nonlinear behavior of the material one can write:
R n
K [o, 002 + Eej =Rg, (8)
n
K (ﬁj = R, ©

where A is the total strain.
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Figure 7
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Equations (8) and (9) constitute a system that allows determining the unknowns n and
K. For the material P255GH at the ambient temperature one has considered R, = 255 MPa,
R, =410 MPa and A = 22%. With these data, one obtained the following values for n and
K, n=0,1216; K = 341,05 MPa, values used to model, in ANSYS, the nonlinear behavior
of the material. The same approach has been considered for the mechanical characteristics
of the material at temperature t = 177°C .

INTERPRETATION OF THE RESULTS

The analyzed results correspond to the two loading cases presented above. The
monitored values were the maximal tensions [1,y7 (Tresca) and [Igqy (von Mises) in the
vertical symmetry plane of the conical asymmetric reduction following the generatrix for
which o = 45°. In figure 8 one presents the distribution of the tensions cgqy for case b) of
loading.

In figure 9, one presents the variation of the principal tensions at the exterior,
respectively interior of the conical asymmetric shell for the loading case a), and in figure 10
for case b).

In table 2, are presented the maximal principal tensions obtained analytically and by
using FEM.
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NODAL SOLUTION

STEP=1

sUB =1

TIME=1

SEQV (AVG)
DMX =8.919
SMN =6.531
SMX =228.168

6.531 55.784 105.037 154.289 203.542
31.157 80.41 129.663 178.916 228.168

Figure 8
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Table 2
p =3 MPa; t = 20°C p =3 MPa; t=177°C
cint [MPa] oeqv [MPq] oint [MPa] oeqv [MPa]
Analitic 121,5 105,22 114,5 99,6
FEM 248 241 2145 207,8

CONCLUSIONS
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Firs of all, one can mention the significant difference between the tensions obtained
using design formula and FEM analysis. This situation leads to the following observations:

- the thickness s of the sheet metal used to construct the asymmetric conical reductions
obtained through the analytical method leads to values of the principal tensions far smaller
than the real ones;

- the values of the real tensions, as they were obtained through FEM analysis are still
within acceptable limits if one considers the mechanical characteristics of the material used
(see table 1) with the amendment
of modifying the safety factors ¢y, =1,5and ¢y, =2,510 1,03

respectively 1,7.

On the other hand, one has to stress the concentration of tensions in the filleting areas,
where the round radiuses have the smallest values (for the case study r = 170 mm). The
influence of the round radius r is insignificant, the tensions obtained on a model with r =
200 mm are very closet o those obtained on the initial model.

It is also important to mention the contour effect that appears in the joining area
between the conical reduction and the cylindrical mantle, as a result of the different
thicknesses of the two metal sheets (see figure 9
and 10).

A key role in determining with great accuracy of the tensions had the possibility,
offered by ANSY'S, to model a nonlinear and temperature dependent behavior of the sheet
metal behavior. The performed analysis revealed the necessity of an interdisciplinary
approach, in order to assure an accurate model and reliable results.
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